Development of a Coupled Land Surface and Groundwater Model
نویسندگان
چکیده
Traditional land surface models (LSMs) used for numerical weather simulation, climate projection, and as inputs to water management decision support systems, do not treat the LSM lower boundary in a fully process-based fashion. LSMs have evolved from a leaky-bucket approximation to more sophisticated land surface water and energy budget models that typically have a specified bottom layer flux to depict the lowest model layer exchange with deeper aquifers. The LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, groundwater models (GWMs) for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow, and root-zone uptake. In the present study, a state-of-the-art LSM (Common Land Model) and a variably saturated GWM (ParFlow) have been coupled as a single-column model. A set of simulations based on synthetic data and data from the Project for Intercomparison of Landsurface Parameterization Schemes (PILPS), version 2(d), 18-yr dataset from Valdai, Russia, demonstrate the temporal dynamics of this coupled modeling system. The soil moisture and water table depth simulated by the coupled model agree well with the Valdai observations. Differences in prediction between the coupled and uncoupled models demonstrate the effect of a dynamic water table on simulated watershed flow. Comparison of the coupled model predictions with observations indicates certain cold processes such as frozen soil and freeze/thaw processes have an important impact on predicted water table depth. Comparisons of soil moisture, latent heat, sensible heat, temperature, runoff, and predicted groundwater depth between the uncoupled and coupled models demonstrate the need for improved groundwater representation in land surface schemes.
منابع مشابه
Groundwater recharge simulation using a coupled saturated-unsaturated flow model
Abstract The coupled MODFLOW-HYDRUS software package was used to produce a saturated-unsaturated flow model for a Flood Spreading System (FSS) and its associated aquifer. The study aim to improve simulations of near-surface hydrological processes, including temporal and spatial variation in groundwater recharge rates. The coupled model was built with average RMSE=1.1 and 1.3 for calibration ...
متن کاملThe impacts of different land use changes on groundwater level using quantitative model WEAP (Case study: Chaharmahal Bakhtiari province, Iran)
Reduction of water resources limits the ability of farmers for food production and subsistence. Nowadays the quick growth of population has been the most important factor in the decline of renewable water. In many parts of Iran, including region of interest, the major factor in water resources decline was land use change, that may cause to ecological destruction and disruption. Sustainabl...
متن کاملSustainable Management of Groundwater Resources Using Multi-Criteria Programming (A Case Study of Kashmar Plain)
Frequent droughts and their consequences result in the loss of groundwater, the deficiency of nutrients, the drying of surface water resources, and substantially more exploitation of the groundwater resources, which, altogether, cause the mobilization of saline waters to groundwater tables. This will impair the capacity of the aquifers and the quality of the water. The VIKOR method was applied ...
متن کاملSimulating and Optimizing the Conjunctive Use of Surface and Groundwater Resources Using the System Dynamics Approach (A Case Study: Dashte-Abbas Irrigation Network)
The construction of irrigation network and the water transfer from Karkheh Dam to Dashte-Abbas, due to neglecting the groundwater resources has increased groundwater level and waterlogging of the agricultural land in the recent years. The aim of this study was, therefore, to optimize the conjunctive use of surface and groundwater resources in Dashte-Abbas to minimize waterlogging problems and a...
متن کاملComparison of Vulnerability of the Southwest Tehran Plain Aquifer with Simple Weighting Model (ALPRIFT Model) and Genetic Algorithm (GA)
Land subsidence due to groundwater resources extraction is one of the abundance events occurred in Iran. If it is not properly managed, this phenomenon can cause irreparable damage to the affected areas. Population growth and agricultural technology have also led to overexploitation of the groundwater resources in some parts of Iran. The rate of land subsidence due to overexploitation of the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005